MASTERING

EMBEDDED SYSTEMS

A 5-Month Journey with C, C++, Linux, and
Raspberry Pi

,

Embedded Systems Development

Become an Embedded Systems Expert in Just 5 Months!

Embark on a hands-on journey to master C Programming, C++, System Programming, Linux
Internals, Device Drivers, and more with real-world projects. Whether you're aiming to work in
embedded software development or want to learn how to interact with hardware systems at
a low level, this course will guide you step-by-step.

About Spectrum Technologies

Empowering Careers Through Quality Technical Education

Spectrum Technologies is a premier technical training institute dedicated to bridging the gap
between academic learning and industry requirements. Since our inception, we have been
committed to providing world-class training in cutting-edge technologies, with a special focus
on Embedded Systems, 10T, Linux, and Full-Stack Development.

Course Highlights

e 24-Week Duration - Comprehensive
learning journey

e Intermediate Level- Perfect for aspiring
embedded engineers

e 95% Completion Rate- Proven track
record of success

What Makes This Course Unique

e End-to-End Embedded Linux Coverage

e Strong Hardware-Software Integratio

e Kernel-Level Depth with Practical Focus

e Industry-Oriented, Project-Based
Learning

e |nterview & Placement Readiness

Course OQutcomes

Strong Foundation in C and C++ Programming

Readiness for Professional Roles

Efficient Linux System-Level Application Development

Kernel Analysis and Interview Preparation

Design and Development of Kernel Modules and Device Drivers

Interfacing Embedded Peripherals

Practical Skills for Embedded Product Development

Building Linux Systems
Proficiency in Linux Build Systems
Placement Readiness

Career Opportunities

Embedded Software Engineer

Firmware Developer

loT Engineer

Linux Device Driver Developer
Embedded Linux Engineer

System Software Engineer

Hardware Design Engineer

Embedded Systems Architect
Automotive Embedded Engineer

BSP (Board Support Package) Developer

Detailed Curriculum

Module 1: C Programming

(4 Weeks)

Build a Rock-Solid Foundation in C Programming — The Backbone of Embedded Systems
Development

Key Topics:

Fundamentals: C history, data types, operators, control statements
Advanced Concepts: Pointers, multi-level pointers, function pointers
Data Structures: Arrays, strings, structures, unions

Memory Management: malloc, calloc, realloc, free

File Operations: Binary files, file I/O

Preprocessor: Macros, header files, conditional compilation

e Best Practices: Debugging with GDB, command-line arguments, volatile/const keywords

What You’ll Build:

e Mini Project: Complete C-based application (e.g., student management system)
e Assignments & Exercises to practice key concepts

Tools:

e GCC Compiler, VS Code, GDB Debugger, Makefile, Valgrind

Module 2: C++ Programming (3 Weeks)
Master Object-Oriented Programming & Modern C++ Features
Key Topics:

OOP Fundamentals: Classes, objects, inheritance, polymorphism
Modern Features: Templates, exception handling, lambda expressions
STL Mastery: Vectors, maps, sets, iterators

Memory: Smart pointers (unique_ptr, shared_ptr), RAIl principles
Design Patterns: Common patterns in embedded systems

What You’ll Build:

e Project1l: Template-based calculator
e Project 2: Real-time data processing application using STL

Tools:

e G++ Compiler, VS Code, CMake, GDB

Module 3: System Programming in Linux Using C (3 Weeks)

Develop Robust System-Level Applications Using Linux APIs
Key Topics:

Linux Architecture: System calls, kernel vs. user space

File I/0: System calls (open, close, read, write)

Process Management: fork(), exec(), waitpid()

Signals & Timers: POSIX timers, signal handling

IPC Mechanisms: Shared memory, semaphores, message queues
Multithreading: POSIX threads, mutexes, condition variables
Network Programming: Socket programming, TCP/UDP

What You’ll Build:

e Project1: TCP client-server application
e Project 2: Multi-threaded producer-consumer application

Tools:

e GCC, GDB, Valgrind, strace, ltrace

Module 4: Linux Internals and Interfacing (2 Weeks)

Deep Dive into Linux Kernel Architecture
Key Topics:

Kernel Architecture: Task struct, kernel components
Memory Management: Paging, swapping, slab allocators
Interrupts & Concurrency: Hardware interrupts, softirq
Debugging: printk, ftrace, kernel panic analysis

What You’ll Do:

e Practical Exercises: Analyze /proc and /sys files
e Kernel Debugging: Learn techniques for analyzing kernel issues

Tools:

e Linux kernel source, dmesg, strace, ftrace

Module 5: Linux Device Driver Programming (3 Weeks)

Write Professional Linux Kernel Modules and Device Drivers
Key Topics:

e Kernel Modules: Module structure, file operations, device registration
e Character & Block Drivers: Request queue, cdev, bio structure

e GPIO Framework: GPIO descriptor interface, interrupts

e 12C & SPI Drivers: Subsystems, device tree bindings

e Interrupt Handling: request_irq(), tasklets, workqueues

What You’ll Build:

e Project1: Character device driver
e Project 2: GPIO LED driver with interrupts
e Project 3: 12C sensor driver for temperature monitoring

Tools:

e Linux kernel headers, GCC, Make/Kbuild, insmod/rmmod

Module 6: Device Driver Programming with RPi-4 (2 Weeks)

Apply Driver Development on Real Raspberry Pi Hardware
Key Topics:

Raspberry Pi Setup: Architecture, GPIO layout, hardware components
GPIO Drivers: LED blink driver, button input with interrupts

I2C & SPI: Sensors, EEPROM interfacing, display drivers

Interrupt Handling: GPIO interrupt configuration

Timers: Kernel timers, periodic tasks

What You’ll Build:

e Project 1: Multi-peripheral driver system (LED + button + sensor)
e Project 2: System monitoring application

Hardware:

e Raspberry Pi 4, sensors, breadboard, jumper wires

Tools:

e Raspberry Pi OS, cross-toolchain, dtc, i2c tools, spi tools

Module 7: Digital System Peripherals and Interfacing (2 weeks)

Master Communication Protocols Used in Embedded Systems
Key Topics:

e 12C, SPI, UART: Protocols, master/slave, addressing, multi-slave config
e CAN Bus: Automotive applications, error detection, SocketCAN
e USB & PCle: Device classes, configuration space, enumeration

What You’ll Build:

e Project: Multi-protocol communication system using I2C, SPI, and UART

Module 8: Embedded Device Driver with RPi-4 (3 Weeks)

Build Production-Grade Embedded Systems with Professional Driver Integration

Key Topics:
[]
e Power Management: Runtime PM, CPU frequency scaling
[]

e Testing & Validation: Unit testing, integration testing

What You’ll Build:

Advanced Module Development: Sysfs attributes, DMA, error handling

Performance Optimization: Zero-copy techniques, buffer management

e Capstone Project: Multi-interface embedded driver system with real-time data

acquisition
Hardware:

e Raspberry Pi kit, sensors, peripherals

Module 9: Linux Build System and Toolchains

Master the Tools and Techniques for Building Embedded Linux Systems
Key Topics:

e Build Systems: Makefiles, GCC flags, cross-compilation
e Toolchains: GCC, binutils, glibc, kernel headers
e Automation: Autoconf, Automake, CMake

What You’ll Build:

e Project 1: Cross-compile and deploy applications to Raspberry Pi
e Project 2: Build custom minimal root filesystem

Tools:

e GCC toolchains, Make, CMake, Busybox, Buildroot

Module 10: Yocto Linux System

Create Custom Embedded Linux Distributions Using Yocto
Key Topics:

e Yocto Fundamentals: Architecture, OpenEmbedded, BitBake
e Image Creation: Custom images, rootfs, kernel customization
e Advanced Features: SDK generation, CI/CD integration

(1 Week)

(2 Weeks)

What You’ll Build:

e Final Project: Custom Yocto Linux distribution for Raspberry Pi with device drivers,
applications, and minimal/full images

Tools:

e Yocto Project, BitBake, devtool, Toaster, QEMU

Why Choose This Course?

e Hands-On Learning: Work with real hardware (Raspberry Pi, sensors, peripherals).

¢ Industry-Relevant Skills: Learn embedded systems development, Linux internals, and
device driver programming.

e ExpertInstructors: Learn from professionals with years of experience in embedded
systems.

e Capstone Project: Build a complete embedded system with a real-time application,

multi-protocol communication, and web-based monitoring.

Ready to get started? Enroll today and build the embedded systems of tomorrow!

