
MASTERING

EMBEDDED SYSTEMS
A 5-Month Journey with C, C++, Linux, and
Raspberry Pi

Embedded Systems Development
Become an Embedded Systems Expert in Just 5 Months!

Embark on a hands-on journey to master C Programming, C++, System Programming, Linux

Internals, Device Drivers, and more with real-world projects. Whether you're aiming to work in

embedded software development or want to learn how to interact with hardware systems at

a low level, this course will guide you step-by-step.

 About Spectrum Technologies

Empowering Careers Through Quality Technical Education

Spectrum Technologies is a premier technical training institute dedicated to bridging the gap

between academic learning and industry requirements. Since our inception, we have been

committed to providing world-class training in cutting-edge technologies, with a special focus

on Embedded Systems, IoT, Linux, and Full-Stack Development.

 Course Highlights

24-Week Duration - Comprehensive

learning journey

Intermediate Level- Perfect for aspiring

embedded engineers

 95% Completion Rate- Proven track

record of success

 What Makes This Course Unique

End-to-End Embedded Linux Coverage

Strong Hardware–Software Integratio

Kernel-Level Depth with Practical Focus

Industry-Oriented, Project-Based

Learning

Interview & Placement Readiness

Course Outcomes

Strong Foundation in C and C++ Programming

Readiness for Professional Roles

Efficient Linux System-Level Application Development

Kernel Analysis and Interview Preparation

Design and Development of Kernel Modules and Device Drivers

Interfacing Embedded Peripherals

Practical Skills for Embedded Product Development

Building Linux Systems

Proficiency in Linux Build Systems

Placement Readiness

Career Opportunities

 Embedded Software Engineer

 Firmware Developer

 IoT Engineer

 Linux Device Driver Developer

 Embedded Linux Engineer

 System Software Engineer

 Hardware Design Engineer

 Embedded Systems Architect

 Automotive Embedded Engineer

 BSP (Board Support Package) Developer

Detailed Curriculum

Module 1: C Programming (4 Weeks)

Build a Rock-Solid Foundation in C Programming – The Backbone of Embedded Systems

Development

Key Topics:

Fundamentals: C history, data types, operators, control statements
Advanced Concepts: Pointers, multi-level pointers, function pointers
Data Structures: Arrays, strings, structures, unions
Memory Management: malloc, calloc, realloc, free
File Operations: Binary files, file I/O
Preprocessor: Macros, header files, conditional compilation

Best Practices: Debugging with GDB, command-line arguments, volatile/const keywords

What You’ll Build:

Mini Project: Complete C-based application (e.g., student management system)
Assignments & Exercises to practice key concepts

Tools:

GCC Compiler, VS Code, GDB Debugger, Makefile, Valgrind

Module 2: C++ Programming (3 Weeks)

Master Object-Oriented Programming & Modern C++ Features

Key Topics:

OOP Fundamentals: Classes, objects, inheritance, polymorphism
Modern Features: Templates, exception handling, lambda expressions
STL Mastery: Vectors, maps, sets, iterators
Memory: Smart pointers (unique_ptr, shared_ptr), RAII principles
Design Patterns: Common patterns in embedded systems

What You’ll Build:

Project 1: Template-based calculator
Project 2: Real-time data processing application using STL

Tools:

G++ Compiler, VS Code, CMake, GDB

Module 3: System Programming in Linux Using C (3 Weeks)

Develop Robust System-Level Applications Using Linux APIs

Key Topics:

Linux Architecture: System calls, kernel vs. user space
File I/O: System calls (open, close, read, write)
Process Management: fork(), exec(), waitpid()
Signals & Timers: POSIX timers, signal handling
IPC Mechanisms: Shared memory, semaphores, message queues
Multithreading: POSIX threads, mutexes, condition variables
Network Programming: Socket programming, TCP/UDP

What You’ll Build:

Project 1: TCP client-server application
Project 2: Multi-threaded producer-consumer application

Tools:

GCC, GDB, Valgrind, strace, ltrace

Module 4: Linux Internals and Interfacing (2 Weeks)

Deep Dive into Linux Kernel Architecture

Key Topics:

Kernel Architecture: Task struct, kernel components
Memory Management: Paging, swapping, slab allocators
Interrupts & Concurrency: Hardware interrupts, softirq
Debugging: printk, ftrace, kernel panic analysis

What You’ll Do:

Practical Exercises: Analyze /proc and /sys files
Kernel Debugging: Learn techniques for analyzing kernel issues

Tools:

Linux kernel source, dmesg, strace, ftrace

Module 5: Linux Device Driver Programming (3 Weeks)

Write Professional Linux Kernel Modules and Device Drivers

Key Topics:

Kernel Modules: Module structure, file operations, device registration
Character & Block Drivers: Request queue, cdev, bio structure
GPIO Framework: GPIO descriptor interface, interrupts
I2C & SPI Drivers: Subsystems, device tree bindings
Interrupt Handling: request_irq(), tasklets, workqueues

What You’ll Build:

Project 1: Character device driver
Project 2: GPIO LED driver with interrupts
Project 3: I2C sensor driver for temperature monitoring

Tools:

Linux kernel headers, GCC, Make/Kbuild, insmod/rmmod

Module 6: Device Driver Programming with RPi-4 (2 Weeks)

Apply Driver Development on Real Raspberry Pi Hardware

Key Topics:

Raspberry Pi Setup: Architecture, GPIO layout, hardware components
GPIO Drivers: LED blink driver, button input with interrupts
I2C & SPI: Sensors, EEPROM interfacing, display drivers
Interrupt Handling: GPIO interrupt configuration
Timers: Kernel timers, periodic tasks

What You’ll Build:

Project 1: Multi-peripheral driver system (LED + button + sensor)
Project 2: System monitoring application

Hardware:

Raspberry Pi 4, sensors, breadboard, jumper wires

Tools:

Raspberry Pi OS, cross-toolchain, dtc, i2c tools, spi tools

Module 7: Digital System Peripherals and Interfacing (2 Weeks)

Master Communication Protocols Used in Embedded Systems

Key Topics:

I2C, SPI, UART: Protocols, master/slave, addressing, multi-slave config
CAN Bus: Automotive applications, error detection, SocketCAN
USB & PCIe: Device classes, configuration space, enumeration

What You’ll Build:

Project: Multi-protocol communication system using I2C, SPI, and UART

Module 8: Embedded Device Driver with RPi-4 (3 Weeks)

Build Production-Grade Embedded Systems with Professional Driver Integration

Key Topics:

Advanced Module Development: Sysfs attributes, DMA, error handling
Power Management: Runtime PM, CPU frequency scaling
Performance Optimization: Zero-copy techniques, buffer management
Testing & Validation: Unit testing, integration testing

What You’ll Build:

Capstone Project: Multi-interface embedded driver system with real-time data
acquisition

Hardware:

Raspberry Pi kit, sensors, peripherals

Module 9: Linux Build System and Toolchains (1 Week)

Master the Tools and Techniques for Building Embedded Linux Systems

Key Topics:

Build Systems: Makefiles, GCC flags, cross-compilation
Toolchains: GCC, binutils, glibc, kernel headers
Automation: Autoconf, Automake, CMake

What You’ll Build:

Project 1: Cross-compile and deploy applications to Raspberry Pi
Project 2: Build custom minimal root filesystem

Tools:

GCC toolchains, Make, CMake, Busybox, Buildroot

Module 10: Yocto Linux System (2 Weeks)

Create Custom Embedded Linux Distributions Using Yocto

Key Topics:

Yocto Fundamentals: Architecture, OpenEmbedded, BitBake
Image Creation: Custom images, rootfs, kernel customization
Advanced Features: SDK generation, CI/CD integration

What You’ll Build:

Final Project: Custom Yocto Linux distribution for Raspberry Pi with device drivers,
applications, and minimal/full images

Tools:

Yocto Project, BitBake, devtool, Toaster, QEMU

Why Choose This Course?

Hands-On Learning: Work with real hardware (Raspberry Pi, sensors, peripherals).

Industry-Relevant Skills: Learn embedded systems development, Linux internals, and

device driver programming.

Expert Instructors: Learn from professionals with years of experience in embedded

systems.

Capstone Project: Build a complete embedded system with a real-time application,

multi-protocol communication, and web-based monitoring.

Ready to get started? Enroll today and build the embedded systems of tomorrow!

